PHILIPP Compact anchor

Installation Instruction

Transport and mounting systems for prefabricated building

Technical department	
	Our staff will be pleased to support your planning phase with suggestions for the installation and use of our transport and mounting systems for precast concrete construction.
Special designs	
	Customized to your particular needs.
Practical tests on site	
	We ensure that our concepts are tailored precisely to your requirements.
Inspection reports	
	For documentation purposes and your safety.
On-site service	
	Our engineers will be pleased to instruct your technicians and production per- sonnel at your plant, to advise on the installation of precast concrete parts and to assist you in the optimisation of your production processes.
High safety level when using or	ur products
	Close cooperation with federal materials testing institutes (MTIs), and official approvals for the use of our products and solutions whenever necessary.
Software solutions	
	The latest design software, animated videos and CAD libraries can always be found under www.philipp-gruppe.de.
Engineering contact	
	Phone: +49 (0) 6021 / 40 27-318 Fax: +49 (0) 6021 / 40 27-340 E-mail: technik@philipp-gruppe.de
Sales contact	
	Phone: +49 (0) 6021 / 40 27-300 Fax: +49 (0) 6021 / 40 27-340 E-mail: vertrieb@philipp-gruppe.de

Content

Der PHILIPP Compact Anchor	Page	4
System description	Page	4
EC Declaration of Conformity	Page	4
General notes / selection of anchor	Page	5
Materials	Page	5
Corrosion	Page	5
Element thickness, centre and edge distances	Page	5
Concrete strength	Page	5
 Selection guide for transport anchors 	Page	5
Reinforcement	Page	6
Minimum reinforcement	Page	6
Single-layer reinforcement	Page	6
Add. reinforcement for diagonal and lateral tension	Page	6
Permissible load bearing capacities and boundary conditions	Page	7
For axial tension	Page	7
For diagonal tension	Page	8
For lateral tension	Page	9

PHILIPP Compact anchor

The Compact anchor is used for the installations on the face side of beam-like elements and stairs. It is part of the PHILIPP Transport anchor system and complies with the VDI/BV-BS Guideline "Lifting inserts and lifting insert systems for precast concrete elements" (VDI/BV-BS 6205).

The use of Compact anchors requires the compliance with this Installation Instruction as well as the General Installation Instruction. The Installation and Application Instructions for the belonging PHILIPP lifting devices (Lifting loop with threaded end, Lifting loop Plus, "Wirbelstar", "Lifty") as well as the Application Instruction of the belonging PHILIPP accessories (KHN system, WS system etc.) must be followed also.

The anchor may only be used in combination with the mentioned PHILIPP lifting devices. Compact anchors are designed for the transport of precast concrete units only. Multiple use within the transport chain (from production to installation of the unit) means no repeated usage. The Threaded transport anchor is not specified for a repeated usage (e.g. ballasts for cranes) or a permanent fixation.

The EC Declaration of Conformity (DoC) of the Compact anchor is available on request or can be downloaded from our website www.philipp-group.de.	
1 11 0 1	
	The EC Declaration of Conformity (DoC) of the Compact anchor is available on request or can be downloaded from our website www.philipp-group.de.

Table 1: Dimer	ision	S												
Refno. 2	Туре				Weight									
galvanised			RD	ØD [mm]	L [mm]	e [mm]	Ød₁ [mm]	[kg/100 pcs.]						
67K120100		PD 12	12	15.0	100	22	20	6.0						
67K120150		IND 12	12	15.0	150	22	20	10.0						
Der Typ RD 14 des Gewindetransportankersystems ist nicht mehr verfügbar														
67K160130		DD 10	4.0	04.0	130	07	05	14.0						
67K160175		RD 16	16	21.0	175	27	25	17.0						
Der Typ RD 18 des Gewindetransportankersystems ist nicht mehr verfügbar														
67K200185			20	07.0	185	05	35	34.0						
67K200250	\bigcirc	Der RD 20	RD 20	20	27.0	250	35	35	43.0					
67K240200		00.24	24	21.0	200	40	25	42.0						
67K240275	•	KD 24	24	31.0	275	43	55	52.0						
67K300275		PD 30	30	30.5	275	56	50	105.0						
67K300350	$\mathbf{\circ}$	KD 30	30	39.5	350	50	50	126.0						
67K360334		DD 26	26	47.0	334	69	60	184.0						
67K360450	\cup	KD 30	30	47.0	450	00	00	227.0						
67K420385		PD /2	12	54.0	385	75	70	273.0						
67K420500	\bigcirc	ND 42	42	04.0	500	15	10	323.0						
67K520550		PD 52	52	67.0	550	100	85	567.0						
67K520700		KD 52	52	07.0	700	100	00	634.0						

Mind the embedding depth h_T of the corresponding recess former (Picture 2).

② Also available in version stainless steel (Ref.-no. 75K_____VA).

General notes / selection of anchor

Materials

The Compact anchor consists of a round steel with foot and a crimped-on insert. The threaded inserts are made of special high precision steel tubes and are galvanised according to common standards.

This galvanisation protects the anchor temporarily from the storage at the producer site to the final installation in the concrete element.

Corrosion

In order to avoid contamination or damage to the concrete surface of the precast concrete element due to corrosion of the transport anchor (stream of rust or similar), the insert can be delivered in stainless steel alternatively. Here the surface of the foot is protected by a special sealing against corrosion.

Element thicknesses, centre and edge distances

The installation and position of threaded transport anchors in precast concrete elements require minimum element dimensions and centre/edge distances for a safe load transfer.

Concrete strength

At the time of the first lift of the concrete unit the concrete strength must have a minimum f_{cc} according to the tables of the respective load case. Given concrete strengths f_{cc} are cube compressive strengths at the time of the first lifting.

Selection guide for transport anchors

Step 1:

Table 2 shows the maximum possible threaded anchor sizes per element thickness as a function of the load case.

Table 2: Eler	ment thicknes ≥ 15 N/mm² / f _e	s and max. and $2 \ge 20 \text{ N/mm}^2$	chor size for
Element	Tra	nsport anchor [Ty	/pe]
thickness	Axial tension	Diagonal tension	Lateral tension
d [mm]	β _{max} 12.5° γ _{max} 15°	β _{max} 45° γ _{max} 15°	β _{max} 45° γ _{max} 90°
60	RD 12	-	-
70		RD 12	-
80	PD 16	RD 16	
90	KD 10		RD 16
95			
100			
105	RD 20	RD 20	
110	IND 20		RD 20
120	RD 24	RD 24	
125	RD 30	ND 24	RD 24
130	RD 36		ND 24
140	RD 42	RD 30	
150			RD 30
160		RD 42	110 30
200	RD 52		RD 36
220		RD 52	RD 42
280			RD 52

Step 2:

Details of the load bearing capacities and boundary conditions as a function of the concrete compressive strength are given in the following tables:

- Axial tension: Table 3 (15/20 N/mm²)
- Diagonal tension: Table 4 (15/20 N/mm²)
- Lateral tension: Table 5 (15/20 N/mm²)

On lateral tension the Compact anchors have only half of the capacity compared to axial loading. However, this is not a limitation as during tilt-up only half of the weight has to be lifted (please refer to the General Installation Instruction).

Reinforcement

Minimum reinforcement

In use of Compact anchors precast units must be reinforced with a minimum reinforcement. Depending on the load case this can differ and is specified in the tables of the respective load case. This minimum reinforcement can be replaced by a comparable steel bar reinforcement. The user is personally responsible for further transmission of load into the concrete unit.

Existing static or constructive reinforcement can be taken into account for the minimum reinforcement of the respective load case.

Single-layer reinforcement

In order to ensure a central anchor position in the element, the mesh reinforcement has to be cut in this area (see Picture 5) in case of single-layer reinforcement.

Add. reinforcement for diagonal and lateral tension

Additional reinforcement for diagonal and lateral tension has to be installed with pressure contact to the anchor insert. The position of the direct pressure contact must be within the thread reach e of the insert (see Picture 6). By using the Marking ring with clip (74KR_CLIP) this position is guaranteed.

The installation of a single-layer reinforcement requires for all subsequent loads (e.g. within a transport chain) the attention of the load directions.

Axial tension: Permissible load bearing capacities and boundary conditions

If the Compact anchor is used in axial load β_{max} 12.5° / γ_{max} > 15° an additional reinforcement according to Table 3 is required.

Table 3: A	xial tension if f _{cc}	≥ 15 N/mm² / 20 N	l/mm²								
Load class	N	lin. element thicknes	S	β _{max} 12.5° / γ _{max} 15°							
	min. d	centre and edge dista	ances	allov	Mesh						
				$f_{cc} \ge 15 \text{ N/mm}^2$ $f_{cc} \ge 20 \text{ N/mm}^2$							
	d	aa	ar								
	[mm]	[mm]	[mm]	[kN]	[kN]	[mm²/m]					
12	60	300	150	5.0	5.0	1 × #131					
16	80	400	200	11.7	12.0	1 × #131					
20	105	600	300	20.0	20.0	2 × #188					
24	120	600	300	25.0	25.0	2 × #188					
30	125	700	350	40.0	40.0	2 × #188					
36	130	800	400	62.8	63.0	2 × #188					
42	140	1000	500	80.0	80.0	2 × #188					
52	150	1200	600	125.0	125.0	2 × #188					

Diagonal tension: Permissible load bearing capacities and boundary conditions

If the Compact anchor is used under diagonal tension $\beta > 12.5^{\circ}$ an additional reinforcement according to Table 4 is required. Here the reinforcement for diagonal tension is placed contrarily to the tensile direction (Picture 8) and must have direct pressure contact to the anchor insert in the peak of its bending. The installation of the rebars for diagonal tension can be done in an anglke of 0° bis 20° to the concrete surface. If an installation angle of 0° is given the transport anchor has to be installed in a deeper position (e.g. By using a nailing plate) in order to reach the minimum required concrete covering.

: Diagonal t	ension if f _{cc}	≥ 15 N/mm ²	² / 20 N/mm ²											
Min. e	lement thickne	esses,	β _{max} 45° / γ _{max} 15°											
min	. centre and e	dge	pern	perm. F _Z Add. reinforceme										
	distances		f _{cc} ≥ 15 N/mm²	f _{cc} ≥ 20 N/mm²	Mesh reinforcement	Add. reinforc	ement for dia (B500A)	gonal tension						
d [mm]	a _a [mm]	a _r [mm]	[kN] [kN]		(square) [mm²/m]	Ød _s [mm]	L	Ød _{br} [mm]						
70	300	150	5.0	5.0	1 × #131	6	150	18						
80	400	200	11.2	12.0	1 × #188	8	200	24						
100	600	300	20.0	20.0	2 × #188	10	300	40						
120	600	300	25.0	25.0	2 × #188	10	300	40						
130	700	350	40.0	40.0	2 × #257	12	350	48						
160	800	400	63.0	63.0	2 × #257	14	400	56						
160	1000	500	80.0	80.0	2 × #257	14	500	56						
200	1200	600	125.0	125.0	2 × #257	20	600	86						
	: Diagonal t Min. e min d [mm] 70 80 80 80 90 100 120 120 130 160 160 160 200	d aa [mm] [mm] 70 300 80 400 80 400 100 600 120 600 130 700 160 800 160 1000 200 1200	c Diagonal tension if f _{cc} ≥ 15 N/mm² Min. element thicknesses, min. centre and edge distances d d aa ar [mm] [mm] [mm] 70 300 150 80 400 200 80 400 200 90 500 250 100 600 300 120 600 300 130 700 350 160 800 400 160 1000 500 200 1200 600	Diagonal tension if $f_{cc} ≥ 15 \text{ N/mm}^2 / 20 \text{ N/mm}^2$ Min. element thicknesses, min. centre and edge distances perm d a_a a_r [mm] [mm] [kN] 70 300 150 5.0 80 400 200 8.0 80 400 200 11.2 90 500 250 16.0 100 600 300 25.0 130 700 350 40.0 160 800 400 63.0 160 1000 500 80.0 200 1200 600 10.0	Diagonal tension if $f_{cc} ≥ 15 \text{ N/mm²} / 20 \text{ N/mm²}$ Min. element thicknesses, min. centre and edge distances perm. F_Z f_{cc} f_{cc} f_{cc} d a_a a_r [kN] [kN] 0 300 150 5.0 5.0 80 400 200 8.0 8.0 80 400 200 11.2 12.0 90 500 250 16.0 16.0 100 600 300 25.0 25.0 120 600 300 25.0 25.0 130 700 350 40.0 40.0 160 800 400 63.0 80.0 160 1000 500 80.0 80.0 160 1200 600 125.0 125.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						

Tor this unit thickness, additional reinforcement according to Table 4a is required

Table 4	Table 4a: Additional reinforcement for diagonal tension														
Load class	Lengt reinfor (B50	hwise cement 00A)	Stirrup in anchor area (B500A)												
	Ø [mm]	Length [mm]	Quantity [pcs.]	Ød _{sB} [mm]	L _B [mm]	e [mm]									
30	12	800	6	8	350	130									
36	12	800	6	8	400	150									
42	12	1000	6	8	500	150									
52	12	1200	6	10	600	150									

Lateral tension: Permissible load bearing capacities and boundary conditions

If an Compact anchor is loaded by lateral tension with an inclination of $\gamma > 15^{\circ}$ an additional reinforcement is required according Table 5 and 5a. The reinforcement for lateral tension can be done as a single reinforcement bar (Picture 10), double reinforcement bar (Picture 11) or reverse reinforcement bar for lateral tension (Picture 12). There must be direct pressure contact between the insert of the transport anchor and the reinforcement in the peak of the bending. The reinforcement for lateral tension is installed in the front side of the wall contrary to the load direction. Tilting of walls can cause diagonal and lateral tension at the same time (Picture 11 and 12). In this case only the reinforcement for lateral tension is required (reverse reinforcement bar or double reinforcement bar). The diagonal tension is already covered by using this reinforcement. During mounting the tilt-up or turn-over of a unit requires lateral reinforcement (single reinforcement bar according to Picture 10 or reverse reinforcement bar for lateral tension according to Picture 12).

The double reinforcement tail for lateral tension (Picture 11) covers standard lifting directions.

Picture 11 Diagonal and lateral tension - double reinforcement bar

Table \$	Table 5: Lateral tension if f _{cc} ≥ 15 N/mm² / 20 N/mm²																
Load	Min. eler	ment thic	knesses,	γ _{max} 90° / β _{max} 45° ④													
class	min. c	entre and	d edge	perm	n. F _{QZ} Add. reinforcement for lateral tension												
	1	distances	6	f _{cc}	f _{cc}	Mesh	Singl	e reinfo	rceme	nt bar	Reverse reinforcement						
				≥15 N/mm ²	≥20 N/mm²	reinforcement		(B500A			(B500A)						
	d	d a _a a _r				(square)	Ød _{s1}	L ₁	h ₁	Ød _{br1}		L_2	h ₂	Ød _{br2}			
	[mm]	[mm]	[mm]	[kN]	[kN]	[mm²/m]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]			
12	80	300	150	2.5	2.5	1 × #131	6	300	34	24	6	150	34	24			
16	80	400	200	4.4	5.1	1 × #188	8	400	39	32	8	200	39	32			
20 ⑤	110	600	300	10.0	10.0	2 × #188	12	600	55	48	12	300	55	48			
24 ⑤	120	600	300	12.5	12.5	2 × #188	12	600	73	48	12	300	73	48			
30 ⑤	150	700	350	20.0	20.0	2 × #257	14	700	88	56	14	350	88	56			
36 5	200	800	400	31.5	31.5	2 × #257	14	800	115	56	14	400	115	56			
42 ⑤	220	1000	500	40.0	40.0	2 × #257	16	1000	123	64	16	500	123	64			
52 ⑤	280	1200	600	60.3	62.5	2 × #257	20	1200	170	140	20	600	170	140			

④ For the reinforcement "single reinforcement bar" (picture 10) only F_Q (β_{max} 12.5°) is permissible!

⑤ For this unit thickness, additional reinforcement according to Table 5 is required

Lateral tension: Permissible load bearing capacities and boundary conditions

Table 5	a: Addit	ional re	inforcen	nent for	lateral te	ension					
Load class	Longit reinfor (B50	udinal cement 00A)	Stirrup in anchor area (B500A)								
	Ø	Length	Quantity	$\operatorname{Ød}_{sB}$	L _B	е					
	[mm]	[mm]	[pcs.]	[mm]	[mm]	[mm]					
20	12	600	4	8	300	150					
24	12	600	4	8	300	150					
30	16	700	6	8	350	130					
36	16	800	6	8	400	150					
42	16	1000	8	8	500	130					
52	20	1200	8	10	600	150					

Notes:

Our customers trust us to deliver.

We do everything in our power to reward their faith and we start each day intending to do better

Welcome to the PHILIPP Group

than the last. We provide strength and stability in an ever-changing world. We provide it support.

For more information visit our website: www.philipp-group.de