PHILIPPGROUP

PHILIPP Threaded transport anchor

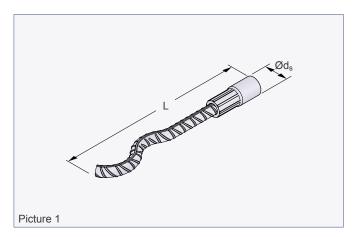
Installation and Application Instruction

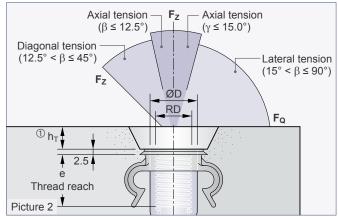
Transport and mounting systems for prefabricated building

Technical department	
	Our staff will be pleased to support your planning phase with suggestions for the installation and use of our transport and mounting systems for precast concrete construction.
Special designs	
	Customized to your particular needs.
Practical tests on site	
	We ensure that our concepts are tailored precisely to your requirements.
Inspection reports	
	For documentation purposes and your safety.
On-site service	
	Our engineers will be pleased to instruct your technicians and production per- sonnel at your plant, to advise on the installation of precast concrete parts and to assist you in the optimisation of your production processes.
High safety level when using out	r products
	Close cooperation with federal materials testing institutes (MTIs), and official approvals for the use of our products and solutions whenever necessary.
Software solutions	
	The latest design software, animated videos and CAD libraries can always be found under www.philipp-gruppe.de.
Engineering contact	
	Phone: +49 (0) 6021 / 40 27-318 Fax: +49 (0) 6021 / 40 27-340 E-mail: technik@philipp-gruppe.de
Sales contact	
	Phone: +49 (0) 6021 / 40 27-300 Fax: +49 (0) 6021 / 40 27-340 E-mail: vertrieb@philipp-gruppe.de

Content

	The PHILIPP Threaded transport anchor - long wavy tail		
	System description	Page	4
	EC Declaration of Conformity	Page	4
-	General notes / anchor selection	Page	5
	 Materials 	Page	5
	Corrosion protection	Page	5
	Element thicknesses, centre and edge distances	Page	5
	Concrete strength	Page	5
	Selection guide for transport anchors	Page	5
-	Reinforcement	Page	6
	Minimum reinforcement	Page	6
	Reinforcement instructions for thin elements	Page	6
	Diagonal and lateral tension	Page	6
	Permissible load bearing capacities and boundary conditions	Page	7
	for axial tension	Page	7
	for diagonal tension	Page	8
	for lateral tension	Page	9





PHILIPP Threaded transport anchor - long wavy tail

The Threaded transport anchor is part of the PHILIPP Transport anchor system and complies with the VDI/BV-BS-Guideline "Lifting inserts and lifting insert systems for precast concrete elements" (VDI/BV-BS 6205). The use of Threaded transport anchors requires the compliance with this Installation Instruction as well as the General Installation Instruction. The Installation and Application Instructions for the belonging PHILIPP lifting devices (Lifting loop with threaded end, Adapter for lateral tension, "Wirbelstar", "Lifty") as well as the data sheets of the belonging PHILIPP accessories (Plastic nailing plates, Retaining caps KH etc.) must be followed also. The anchor may only be used in combination with the mentioned PHILIPP lifting devices.

Threaded transport anchors are designed for the transport of precast concrete units only. Multiple use within the transport chain (from production to installation of the unit) means no repeated usage. This Installation and Application Instruction does not specify a repeated usage (e.g. ballasts for cranes) or a permanent fixation.

(i) The EC Declaration of Conformity (DoC) of the Threaded transport anchor long wavy tail is available on request or can be downloaded from our website www.philipp-group.de.

Table 1: Dimensions													
RefNo. 2	Туре	Type Dimensions											
bright zinc plated		RD	ØD	L	e	Øds	[kg/100 peo]						
Zine plated			[mm]	[mm]	[mm]	[mm]	[kg/100 pcs.]						
67M12WE	😑 RD 12	12	15.0	137	22	8	7.0						
	RD 14 Type RD 14 of the threaded transport anchor system is no longer available 10												
67M16WE	🛑 RD 16	16	21.0	216	27	12	24.0						
	🔵 RD 18 🛽	Type RD 18 of the	threaded transpo	rt anchor system	is no longer avail	able 14							
67M20WE	🔵 RD 20	20	27.0	257	35	16	49.0						
67M24WE	📄 RD 24	24	31.0	350	43	16	68.0						
67M30WE	📄 RD 30	30	39.5	450	56	20	140.0						
67M36WE	🔵 RD 36	36	47.0	570	68	25	250.0						
67M42WE	🔵 RD 42	42	54.0	620	75	28	370.0						
67M52WE	😑 RD 52	52	67.0	750	100	32	640.0						

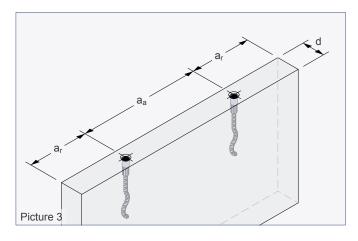
 \odot Mind the embedding depth h_T of the corresponding Nailing plate and Retaining cap (Picture 2).

2 Also available in stainless steel (Ref.-No. 75M__VAWE).

General notes / anchor selection

Materials

The Threaded transport anchors consist of a straight reinforcement bar B500B with crimped-on insert. All threaded inserts are made of special high precision steel tubes and are galvanised according to common standards.


This galvanisation protects the anchor temporarily from the storage at the producer site to the final installation in the concrete element.

Corrosion

In order to avoid contamination or damage to the concrete surface of the precast concrete element due to corrosion of the transport anchor (stream of rust or similar), the insert can be delivered in stainless steel alternatively. Here the cut surface of the reinforcement bar is protected by a special sealing against corrosion.

Element thicknesses, centre and edge distances

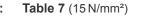
The installation and position of threaded transport anchors in precast concrete elements require minimum element dimensions and centre/edge distances for a safe load transfer.

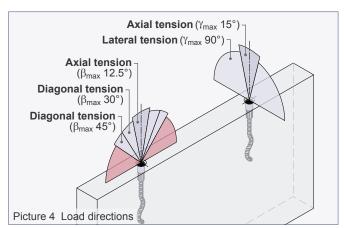
Concrete strength

With the time of the first lift of the concrete unit the concrete strength must have a minimum f_{cc} according to the tables of the respective load case. Given concrete strengths f_{cc} are cube compressive strengths at the time of the first lifting.

Selection guide for transport anchors

Step 1:


Table 2 shows the maximum possible threaded anchor sizes per element thickness as a function of the load case.


Table 2: Element thicknesses and max. anchor sizes for $f_{cc} \ge 15 \text{ N/mm}^2 / f_{cc} \ge 20 \text{ N/mm}^2$													
Element Transport anchor [Type]													
thickness	Axial tension	Diag tens	onal sion	Lateral tension									
d [mm]	β _{max} 12.5° γ _{max} 15°	β _{max} 30° γ _{max} 15°	β _{max} 45° γ _{max} 15°	β _{max} 45° γ _{max} 90°									
60	RD 14	RD 14	RD 14	-									
80	RD 16	RD 16	RD 16	RD 16									
100	RD 20	RD 20	RD 20	RD 20									
120	RD 24	RD 24	00.24	00.24									
130	RD 36	RD 36	RD 24	RD 24									
140	RD 42	RD 42	RD 30	RD 30									
150			KD 30	KD 30									
200	RD 52	DD 52	RD 36	RD 36									
240	RD 52	RD 52	RD 42	RD 42									
275			RD 52	RD 52									

Step 2:

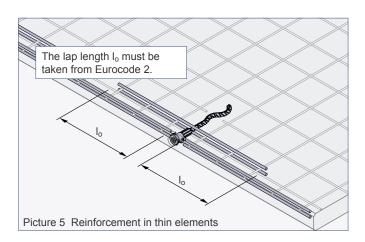
Details of the load bearing capacities and boundary conditions as a function of the concrete compressive strength are given in the following tables.

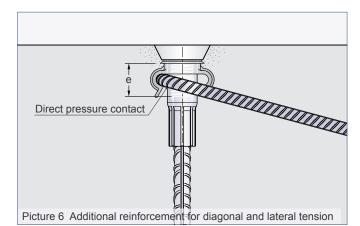
- Axial tension:
- Table 3/4 (15/20 N/mm²)
- Diagonal tension: Table 5/6 (15/20 N/mm²)
- Lateral tension: Tab

On lateral tension the Threaded transport anchors have only half of the capacity compared to axial loading. However, this is not a limitation as during tilt-up only half of the weight has to be lifted (please refer to the General Installation Instruction).

Reinforcement

Minimum reinforcement


In use of Threaded transport anchors precast units must be reinforced with a minimum reinforcement. Depending on the load case this can differ and is specified in the tables of the respective load case. This minimum reinforcement can be replaced by a comparable steel bar reinforcement. The user is personally responsible for further transmission of load into the concrete unit.


Reinforcement instructions for thin elements

In thin elements it might be necessary to cut the longitudinal reinforcement close to the insert (counter brace) in order to have enough concrete cover in this area. Best position for the longitudinal reinforcement should be below the crimping (see Picture 5).

Add. reinforcement for diagonal and lateral tension

Additional reinforcement for diagonal and lateral tension has to be installed with pressure contact to the anchor insert. The position of the direct pressure contact must be within the thread reach e of the insert (see Picture 6). By using the Marking ring with clip (Ref. No. 74KR__CLIP) this position is guaranteed. Existing static or constructive reinforcement can be taken into account for the minimum reinforcement for the respective load case.

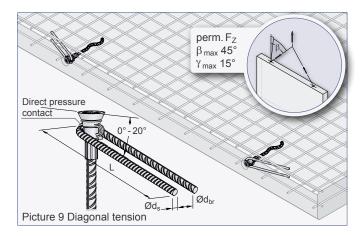
Axial tension: Permissible load bearing capacities and boundary conditions

Table 3: Axial tension if f _{cc} ≥ 15 N/mm²													
Load	Eleme	ent thickn	β _{max} 12.5° / γ _{max} 15°										
class		tre and e distances	0	perm. F_Z	Mesh								
		uistances)		reinforcement								
	d	aa	ar		(square)								
	[mm]	[mm]	[mm]	[kN]	[mm²/m]								
12	60	300	150	5.0	2 × #131								
16	80	400	200	12.0	2 × #131								
20	100	550	275	20.0	2 × #188								
24	120	600	300	25.0	2 × #188								
30	140	650	350	40.0	2 × #188								
36	200	800	400	63.0	2 × #188								
42	240	1000	500	80.0	2 × #188								
52	275	1200	600	125.0	2 × #188								

Table 4	Table 4: Axial tension if $f_{cc} \ge 20 \text{ N/mm}^2$													
Load		ent thickne	β _{max} 12.5° / γ _{max} 15°											
class		tre and e	0	perm. F _Z	Mesh									
		distances		reinforcement										
	d	aa	ar		(square)									
	[mm]	[mm]	[mm]	[kN]	[mm²/m]									
36	130	800	400	63.0	2 × #188									
42	140	1000	500	80.0	2 × #188									
52	150	1200	600	125.0	2 × #188									

Position of the anchor wave

When installing the threaded transport anchor, the position of the waved end shall be observed. Make sure that this is positioned parallel to the concrete element surface (Picture 8a).


Picture 8a Correct position

Picture 8b Wrong position

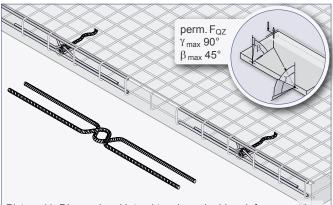
Diagonal tension: Permissible load bearing capacities and boundary conditions

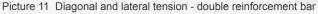
If the Threaded transport anchor is used under diagonal tension $\beta > 12.5^{\circ}$ an additional reinforcement according to Table 5 or 6 is required. Here the reinforcement for diagonal tension is placed contrarily to the tensile direction (Picture 9) and must have direct pressure contact to the anchor insert in the peak of its bending. The installation of the reinforcement for diagonal tension can be done in an angle of 0° up to 20° to the concrete surface.

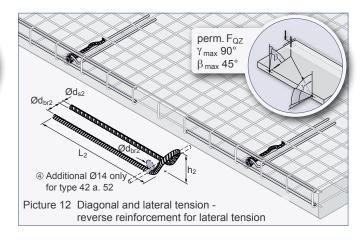
With an installation angle of 0° , the transport anchor must be installed in a recessed position (e.g. by using a Nailing plate), as this is the only way to ensure the required concrete cover for the bond.

Table 5: Diagonal tension if f _{cc} ≥ 15 N/mm²															
Load class	cent	nt thickn re and e	dge	perm. F _Z Additional reinforcement						perm. F _Z β _{max} 45° / γ _{max} 15° Additional reinforcement					
	distances				Mesh reinforcement		einforcen gonal ten			Mesh Add. reinford reinforcement diagonal					
	d [mm]	a _a [mm]	a _r [mm]	[kN]	(square) [mm²/m]	Ød _s [mm]	L [mm]	Ød _{br} [mm]	[kN]	(square) [mm²/m]	Ød _s [mm]	L [mm]	Ød _{br} [mm]		
12	60	300	150	5.0	2 × #131	6	150	24	5.0	2 × #131	6	150	24		
16	80	400	200	12.0	2 × #131	6	250	24	12.0	2 × #131	8	200	32		
20	100	550	275	20.0	2 × #188	8	250	32	20.0	2 × #188	8	300	32		
24	120	600	300	25.0	2 × #188	8	300	32	25.0	2 × #188	10	300	40		
30	140	650	350	40.0	2 × #188	10	350	40	40.0	2 × #188	12	400	48		
36	200	800	400	63.0	2 × #188	12	450	48	63.0	2 × #188	14	550	56		
42	240	1000	500	80.0	2 × #188	14	600	56	80.0	2 × #188	16	600	64		
52	275	1200	600	125.0	2 × #188	16	700	67	125.0	2 × #188	20	750	140		

Table 6	Table 6: Diagonal tension if f _{cc} ≥ 20 N/mm²														
Load		ent thickne	,	β _{max} 30° / γ _{max} 15°											
class		itre and e	0	perm. F _Z	Additional reinforcement										
	distances			Mesh reinforcement	Add. reinfo	al tension									
	d	a _a	ar		(square)	Øds	L	Ød _{br}							
	[mm]	[mm]	[mm]	[kN]	[mm²/m]	[mm]	[mm]	[mm]							
36	130	800	400	63.0	2 × #188	12	450	48							
42	140	1000	500	80.0	2 × #188	14	600	56							
52	150	1200	600	125.0	2 × #188	16	700	67							


PHILIPPGROUP

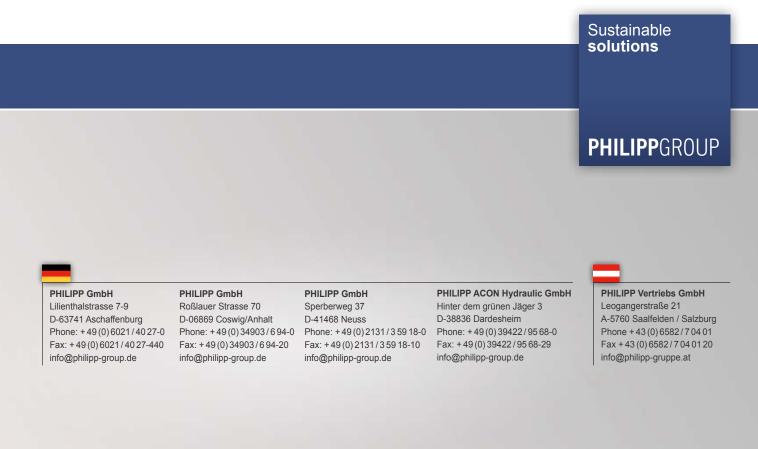

Lateral tension: Permissible load bearing capacities and boundary conditions


If an Threaded transport anchor is loaded by lateral tension with an inclination of $\gamma > 15^{\circ}$ an additional reinforcement is required (Table 7). The reinforcement for lateral tension can be done as a single reinforcement bar (Picture 10), double reinforcement bar (Picture 11) or reverse reinforcement bar (Picture 12). There must be direct pressure contact between the insert of the transport anchor and the reinforcement in the peak of the bending. The reinforcement for lateral tension is installed in the front side of the wall contrarily to the load direction. Tilting of walls can cause diagonal and lateral tension at the same time (Picture 11 and 12).

In this case only the reinforcement for lateral tension is required (reverse reinforcement or double reinforcement bar). The diagonal tension is already covered by using this reinforcement. During mounting the tilt-up or turn-over of a unit requires lateral reinforcement (single reinforcement bar according to Picture 10 or reverse reinforcement bar for lateral tension according to Picture 12). The double reinforcement bar for lateral tension (Picture 11) covers standard lifting directions.

Perm. F_Q Max 90° Max 12.5° Øds1 Ødbr1 Juli Juli Ødbr1 Juli J With lateral tension the mesh reinforcement according to table 7 must be applied as a mesh cap. This mesh cap can be replaced by a comparable steel bar reinforcement. In addition to the mesh cap longitudinal reinforcement must be installed as shown in Table 7.

Table 7: Diagonal tension if f _{cc} ≥ 15 N/mm²																
Load		ement thicknesses,			γ _{max} 90° / β _{max} 45° ©											
class		tre and e	0	perm.	Additional reinforcement											
	distances			F _{QZ}	Mesh		Add	. reinfo	rcemen	t for late	eral ten	sion		0	Longitudinal	
					reinforcement (square)	Singl	e reinfo	rcemer	nt bar	Reve	erse rei	nforcer	nent	reinforcement		
	d	a _a	ar		(square) ③	Ød _{s1}	L ₁	h ₁	Ød _{br1}	$ extsf{Ød}_{s2}$	L_2	h ₂	Ød _{br2}	Ø	Length	
	[mm]	[mm]	[mm]	[kN]	[mm²/m]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
12	80	300	150	2.5	2 × #131	6	500	49	24	6	270	35	24	10	850	
16	80	400	200	6.0	2 × #131	8	600	49	32	8	420	49	32	10	850	
20	100	550	275	10.0	2 × #188	10	800	64	40	10	490	64	40	12	850	
24	120	600	300	12.5	2 × #188	12	800	75	48	12	520	75	48	12	850	
30	140	650	350	20.0	2 × #188	12	1000	92	48	12	570	92	48	16	1000	
36	200	800	400	31.5	2 × #188	14	1000	118	56	14	690	118	56	16	1000	
42	240	1000	500	40.0	2 × #188	16	1200	143	64	16④	830	143	64	16	1000	
52	275	1200	600	62.5	2 × #188	20	1500	174	140	20 ④	930	174	140	20	1200	


③ The mesh reinforcement shall be done as a mesh cap or by using similar rebars.

④ Additional Ø14, length = 600 mm required (see Picture 12)

[®] For the reinforcement "single reinforcement bar" (picture 10) only F_Q (β_{max} 12.5°) is permissible!

Our customers trust us to deliver. We do everything in our power to reward their faith and we start each day intending to do better than the last. We provide strength and stability in an ever-changing world.

Welcome to the PHILIPP Group

For more information visit our website: www.philipp-group.de

07/18